Introduction to Environmental Epidemiology

DR. Omm-e-Hany
Epidemiology

- Epidemiology is study of distribution and determinants of health events in population.

- What does this mean?
 - Distribution
 - Determinants
Environmental Epidemiology

• Study of health events related to environment in a population.

• Examples:
 – What is prevalence of chronic obstructive pulmonary disease among textile mill workers?
 – What is blood lead level among children of age 5-12 in Karachi?
 – Why some children are having high lead levels?
Occupational Epidemiology

- The study of the effects of workplace exposures on the occurrence of diseases and injuries
Environmental & Occupational Epidemiology Uses

• Surveillance to determine if disease rates are elevated among people living in a particular area or working in specific occupational settings

• Surveillance to determine if disease rates are elevated among people exposed to specific agents (air pollution, pesticides, lead, arsenic, radiation)

• Investigation of etiology: measurement of the relation between environmental or workplace exposure to specific agents & disease
Environmental & Occupational Epidemiology Uses

• Development of hypotheses about disease risks in other occupational or community groups, with similar exposures
 • Often, observations in the occupational setting lead to hypotheses about the health effects of (lower) environmental exposures

• Provision of a scientific basis for regulatory & legal actions & for remedial action in the environment or workplace

• Evaluation of interventions
How these Relations were Explored?

• Through posing questions
• Developing hypothesis
• Defining objectives
• Design and conduct of studies
• Measuring exposure and effect
• Statistical Analysis
• Inference
Questions

• How many textile mill workers have COPD?

• What is lead level of children in Karachi City?

• Does regular use of wood and cow dung increases risk of COPD among rural women?

• Does chromium causes skin cancer?
Measuring Disease Occurrence

\[
\text{Incidence} = \frac{\text{Number of new cases of disease in a specific time period}}{\text{Population at risk at that time}}
\]

Example:
3 cases of lung cancer per 1000 men over age 18 year in 2001
Measuring Disease Occurrence

\[
\text{Prevalence} = \frac{\text{Number of cases at a specific time}}{\text{Population at risk}}
\]

Example:
- 6% of a textile mill workers had asthma in June 2003
Measuring Disease Occurrence

Relative Risk (RR) = \(\frac{\text{Incidence}^{\text{exp}}}{\text{Incidence}^{\text{unexp}}} \)

Odds Ratio (OR) = \(\frac{\text{Odds}^{\text{exp}}}{\text{Odds}^{\text{unexp}}} \)
Study Designs: case scenario

- You are Medical Advisor of a Petrochemical Industry. There had been concern that workers handling various products may get exposed to benzene. Benzene is potentially carcinogenic and cause leukemia (blood cancer). Level of benzene vary across work stations.
- You have been asked by your seniors who were pressurized by trade union and govt. to investigate if there is any effect of benzene exposure on occurrence of leukemia or any other disease?
Cross-sectional study or screening to exclude those with disease

Exposed to Benzene

Not exposed to Benzene

Reference population free of leukemia

Leukemia (+)

Leukemia (-)

Sample

Leukemia (+)

Leukemia (-)
Cohort Studies

<table>
<thead>
<tr>
<th></th>
<th>Leukemia Positive</th>
<th>Leukemia Negative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene Exposure</td>
<td>a</td>
<td>b</td>
<td>a+b</td>
</tr>
<tr>
<td>Non Exposed to Benzene</td>
<td>c</td>
<td>d</td>
<td>c+d</td>
</tr>
<tr>
<td></td>
<td>a+c</td>
<td>a+d</td>
<td>a+b+c+d</td>
</tr>
</tbody>
</table>
Cohort Studies

• Used to test hypothesis about causation of disease

• Groups of people are defined on particular characteristics before the appearance of disease under study-defining exposed and non exposed

• Observation of groups over period of time to determine and compare frequency study disease among them
Cohort Studies

Analysis:

• Relative Risk = \(\frac{a}{a+b}/\left(\frac{c}{c+d}\right) \)

• Advantages & disadvantages:
 – Good for rare exposures
 – Can ascertain multiple outcome of single exposure
 – Demonstrate temporal relationship
 – Time consuming and costly
 – Loss to follow up (participants can leave in between)
Examples of Cohort Studies

- Associations between lifetime lead exposure with intelligence among children
- Lead exposure and motor functioning in 4(1/2)-year-old children: the Yugoslavia prospective study; to investigate associations between lead exposure and early motor development
Study Designs: scenario

• The study (cohort) you are planning is
 – Time consuming
 – Costly
 – and some of your workers may leave till completion of study

• What you can do?
Retrospective Cohort Study

• If exposure measurements/records and job histories are available can get evidence about exposures

• If medical records are available you can get information about “how many developed Leukemia”?
Study Designs

• You went back to your friends and discussed?

• Group work to come up with solution?

• Retrospective cohort study

• Work finished!
Study Designs

• Information required for retrospective cohort was not available!
• You went back to your seniors and told them that work is not doable
• Seniors were insistent on doing something and asked you:
 – Would you be able to tell us causes of leukemia only among workers in a way that cost less?
Study Designs

- You went back to your friends and discussed
- What options do you have?
- what you can do?
Solution: Case Control Study

Leukemia pts

Ask about exposures

Healthy Controls

Benzene (+)

Benzene (-)

Benzene (+)

benzene (-)
Case Control Studies

<table>
<thead>
<tr>
<th></th>
<th>Leukemia Patients</th>
<th>Healthy Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene Exposed</td>
<td>a</td>
<td>b</td>
<td>a+b</td>
</tr>
<tr>
<td>Benzene Non-exposed</td>
<td>c</td>
<td>d</td>
<td>c+d</td>
</tr>
<tr>
<td>a+c</td>
<td>a+d</td>
<td>a+b+c+d</td>
<td></td>
</tr>
</tbody>
</table>
Case Control Studies

• Selection of study subjects is on the basis of disease status

Case:
Those suffer from disease under study

Control:
Those are free from the disease under study
Case Control Studies

Analysis
- Calculation of Odds Ratio - as measure of association
- $\text{OR} = \frac{ad}{bc}$

Advantages & disadvantages:
- Good for rare disease as cancers
- Short duration and inexpensive
- Rely on recall
- Finding appropriate comparison group difficult
- Sequence of event is difficult to establish
Examples of Case Control Studies

- To evaluate the association between lead exposure, as reflected in bone lead levels, and juvenile delinquency
- Low birth wt. and indoor pollution
- Association of COPD with indoor air pollution
- To test the hypothesis that Essential tremors (ET) is associated with lead exposure.
Study Designs: another scenario

- Social Security Institute was asked by govt. that there are reports of poor safety measures in leather industry and handling of chromium is very poor?
- Occupational health expert was called and asked go and plan an investigation and tell us what is the magnitude of problem say prevalence of chrome ulcer among workers.
Solution: Cross-sectional Study

Reference population

Sample

Chrome ulcer (+)

Gloves (+)

Gloves (-)

Chrome ulcer (-)

Gloves (+)

Gloves (-)
Cross-sectional Studies

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>Non disease</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>a</td>
<td>b</td>
<td>a+b</td>
</tr>
<tr>
<td>Non Exposed</td>
<td>c</td>
<td>d</td>
<td>c+d</td>
</tr>
<tr>
<td></td>
<td>a+c</td>
<td>a+d</td>
<td>a+b+c+d</td>
</tr>
</tbody>
</table>
Cross-sectional Studies

- **Objectives:**
 - To examine the health problem and disease frequency
 - To examine relationship between exposure and disease frequency or health problem

- **Unit of Analysis:** individual

- Exposure and disease status is assessed at the same time
Advantages

- Short duration study
- Start with reference population so generalization possible
- Provide prevalence estimates
Examples of Cross-sectional Studies

• Assessment of prevalence of Arsenicosis in Dadu district.
• Blood lead levels and risk factors for lead toxicity in children from schools and an urban slum in Delhi
• Prevalence of dermatitis among leather tannery workers
Designs in Epidemiology

• Design choice depends on the objectives of study.

• When you want to know “How much is disease”: distribution of disease → descriptive study

• and when you want to answer “why” → Analytical studies
Analytical Designs

- Observational
 - Case-control
 - Cohort

- Interventional
 - Randomized Controlled Trials
 - Clinical and Community Trials
 - Pre post comparison
Randomized Controlled Trial

- These studies are used to test the interventions

- Interventions could be
 - Drugs or clinical procedures
 - Health education programme
 - A new measure for hazard prevention or decreasing exposure at workplace
Randomized Controlled Trial

Patient with Breast Cancer

Radical mastectomy

Random allocation

Radical mastectomy with more limited resection

Recurrence of cancer
No Recurrence of cancer

Recurrence of cancer
No Recurrence of cancer
Randomized Controlled Trial

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Recurrence of breast cancer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Radical Mastectomy (RM)</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Mastectomy with more Limited resection (MLR)</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Total</td>
<td>a+c</td>
<td>b+d</td>
</tr>
</tbody>
</table>
Randomized Controlled Trial

Patients of MTB positives

Directly observed treatment

Random allocation

Conventional treatment

MTB (+)

MTB (-)

MTB (+)

MTB (-)
Examples

• Placebo-controlled, randomized trial of up to three courses of succimer in children with blood lead levels of 20-44 microg/dL.

• Trial to assess the safety and efficacy of meso-2,3-dimercaptosuccinic acid in the treatment of children with lead toxicity
Cohort & Intervention study

<table>
<thead>
<tr>
<th>Objective</th>
<th>Cohort Study (Prospective)</th>
<th>Intervention Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>To test hypothesis regarding the causation of disease</td>
<td>To evaluate the efficacy of preventive or therapeutic agent or procedure</td>
<td></td>
</tr>
</tbody>
</table>

| The role of investigators | To conduct observation of exposure causing the disease | To allocate the exposure to the study subjects, and observe the outcome caused by exposure |
Descriptive Epidemiology

- Use to describe health states or events
- Types
 - Case Report & Case series
 - Correlative studies
 - Time series analysis
 - Ecological Studies
 - Surveillance
 - Cross-sectional studies
Case Report & Case Series

• Case report: A careful and detailed report of some new finding about one case is case report. e.g., chronic CO poisoning in a child

• Case series: Case series describe characteristics of number of cases e.g., distribution of characteristics of cancer patients in a hospital
Correlation studies

• Objective: To correlate general characteristics of population with their disease frequency at same period of time; within same population at different time periods

• Unit of analysis: group
Ecological correlations

- To correlate characteristics of population with disease frequency among several groups of people during the same period of time.

- Example:
 - Average TSP in ambient of big cities and respiratory tract infections.
Surveillance

- Continuous, systematic process of collection, analysis, interpretation and dissemination of information for monitoring health problems
Study Designs

Descriptive studies
- Case report
- Case series
- Surveillance

Analytical studies
- Correlational
- Cross-sectional

Observational
- Case-control
- Cohort

Interventional
- Clinical Trial
- Community trial
<table>
<thead>
<tr>
<th>Design</th>
<th>Environmental Epidemiology</th>
<th>Occupational Epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective follow-up</td>
<td>Common</td>
<td>Rare</td>
</tr>
<tr>
<td>Retrospective follow-up</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Nested case-control</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Registry-based case-control</td>
<td>Common</td>
<td>Common but of limited value</td>
</tr>
<tr>
<td>Cross-sectional</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>Ecologic; PMR</td>
<td>Becoming rare; rare</td>
<td>Rare; becoming rare</td>
</tr>
<tr>
<td>Descriptive & surveillance</td>
<td>Common for exposure & disease</td>
<td>Common for exposure & disease</td>
</tr>
<tr>
<td>Meta-analysis or collaborative reanalysis</td>
<td>Common</td>
<td>Common</td>
</tr>
</tbody>
</table>
Specific Study Designs in Relation to Research Objectives & Design Determinants

<table>
<thead>
<tr>
<th>Design*</th>
<th>Etiology</th>
<th>Public Health</th>
<th>Intervention</th>
<th>Hypothesis</th>
<th>Feasibility</th>
<th>Credibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>RF</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>NCC</td>
<td>+</td>
<td></td>
<td></td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>RBCC</td>
<td>+</td>
<td>+</td>
<td></td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>-</td>
<td>+</td>
<td></td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ecologic</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Surv.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta</td>
<td>+</td>
<td>+</td>
<td></td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

*PFS, prospective follow-up; RFS, retrospective follow-up; NCCS, nested case-control; RBCC, registry-based case-control; CS, cross-sectional.